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Abstract. We report a calculation of the binding and transition energies of the ground and some
excited states of a hydrogenic donor impurity located at the axis of a cylindrical GaAs quantum-
well wire, under the action of a magnetic field applied in the axial direction. Calculations
are made using the effective-mass approximation within the variational approach for infinite
confinement potential. Our results are obtained for several wire radii and as a function of the
applied magnetic field. We have found that some excited states are not bounded for some
values of the radius of the wire and of the applied magnetic field. We show how the geometric
confinement and the applied magnetic field split the degeneracy of some excited states. Also,
we compare our results with those found in GaAs–(Ga, Al)As quantum wells.

1. Introduction

The great progress in semiconductor nanotechnology, such as molecular beam epitaxy
(MBE), metal–organic chemical-vapour deposition (MOCVD) and chemical lithography, has
made possible the realization of a wide variety of semiconductor heterostructures, where
the quantum mechanical nature of the electrons plays an important role. The effects of
applied magnetic fields on the physical properties of low dimensional systems are studied
with interest from the theoretical and experimental point of view. These studies have
been performed with the proposal of understanding the fascinating novel phenomena and of
creating new devices with other functions or to improve the performance of the existing ones.
Although magnetic field effects seem to have less technological significance, they provide a
far richer insight into semiconductor physics than is possible by studying electrons in electric
fields. Magnetic fields have become crucial ingredients of characterization techniques used
to evaluate semiconductor physics.

The magnetic field greatly alters the nature of the electronic states, which manifest
themselves in magneto-optic or magneto-transport phenomenon. Magneto-spectroscopy
experiments have been carried out on shallow donor impurities doped in the central region
of a GaAs quantum wells (QWs) in a GaAs–Ga1−xAl xAs multiple QWs by Jarosiket al [1],
who found increased values for the 1s–2p± transition energies with respect to the bulk values.
Far infrared measurements performed by Yooet al [2] have allowed the observation of
electric-field effects on the electronic states of shallow impurities in selectively donor doped
Ga1−xAl xAs QWs. The effects of electric and magnetic fields on the intradonor transition
energies between the 1s-like ground state and 2p±-like excited states of a hydrogenic donor
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impurities were recently studied by Latgé et al [3] following a variational calculation within
the effective-mass approximation. The theoretical infrared-absorption spectra associated
with 1s–2p± donor transitions in GaAs–Ga1−xAl xAs QWs under electric and magnetic fields,
and for x-polarized radiation, were calculated taking into account the appropriate doping
profile and have provided an adequate understanding of the available 1s–2p± experimental
measurements.

Branis et al [4] reported, for the first time, a calculation of the binding energy of the
ground state of a hydrogenic donor impurity in a quantum wire in the presence of a uniform
magnetic field applied parallel to the wire axis. The calculations were performed using
suitable variational wave functions for an infinite confinement potential. They found that,
for a given value of the magnetic field, the binding energy is found to be larger than in
the zero-field case. Many authors have worked on the calculation of the binding energies,
density of impurity states, transition energies and photoluminescence spectra associated with
shallow impurities in GaAs–Ga1−xAl xAs QWWs. However, there are no theoretical studies
considering the effects of applied magnetic fields on the infrared transitions between excited
states of donor impurities in cylindrical GaAs QWWs.

In this work, using the effective-mass approximation within the variational approach,
we calculate the binding energy and some transition energies associated with the ground and
some excited states of a hydrogenic donor impurity located at the axis of a cylindrical GaAs
QWW, under the action of a magnetic field applied in the axial direction. The quantum
wire length is enough to consider that the carrier motion is free in the axial direction. In
section 2 we present the theory followed for this calculation. Our results and discussion are
presented in section 3, and conclusions in section 4.

2. Theory

In the effective-mass approximation the Hamiltonian of a donor impurity located at the
axis of a cylindrical GaAs QWW with radiusR, infinite confinement potential and in the
presence of an applied magnetic field can be written as:

H = 1

2m∗

[
P − e

c
A

]2

− e2

εr
+ V (ρ) (1)

wherer = (ρ2 + z2)1/2, z is the relative coordinate of the separation between the electron
and the ion of the impurity in the axial direction of the wire,ε is the dielectric constant of
the GaAs,m∗ is the electron effective mass,A(r) is the potential vector of the magnetic
field andV (ρ) is the confinement potential defined as

V (ρ) =
{

0 06 ρ 6 R
∞ ρ > R

V (z) = 0 for all z.

(2)

The vector potential is written asA(r) = 1
2(B × r), with B = Bz. In cylindrical

coordinates the components of the vector potential are

Aρ = Az = 0 Aϕ = 1
2(Bρ). (3)

The Hamiltonian of the system can be written in cylindrical coordinates and in effective
Rydbergs as

H = ∇2− iγ

(
∂

∂ϕ

)
+ γ

2ρ2

4
− 2

r
+ V (ρ) (4)
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where we have used the atomic units of lengtha∗ = h̄2ε/m∗e2 and energyR∗ = e2/2εa∗.
In equation (4),γ is the measure of the electron energy in the first Landau level (n = 0),
due to the action of the magnetic field, which is expressed byγ = eh̄B/2m∗cR∗. For donor
impurities in GaAs,m∗ = 0.065, ε = 12.58, a∗ ∼= 100 Å andR∗ = 5.83 meV.

Due to the inclusion of the impurity potential in the Hamiltonian, equation (1), the
Schr̈odinger equation cannot be analytically solved. We use the variational method in order
to calculate the eigenvalues of the Hamiltonian. Following Brown and Spector [5], we
assume suitable variational wave functions, for the different states, as the product of a
hydrogenic part with the appropriate confluent hypergeometric function. The latter part is
the radial solution of an electron in an infinite potential cylindrical wire, in the presence of
a magnetic field, that is

ψnlm(r) =
{
Nnlm 1F1(a01, 1; ξ)0nlm(r, {λnl, βnl, αnl}) ρ 6 R
0 ρ > R.

(5)

In equation (5),Nnlm is the normalization constant,1F1(a01, 1, ξ ) is the confluent
hypergeometric function, withξ = eBρ2/(2h̄c), a01 is the eigenvalue of the ground state
without the impurity, which is calculated numerically from the boundary-condition for
ρ = R,

1F1(a01, 1, ξR) = 0 (6)

where ξR = γR2/2a∗2 and 0nlm is the hydrogenic wave function, corresponding to the
nlm state, as was proposed by Latgé et al [6]. The λnl , βnl and αnl are variational
parameters used by Chaudhuri and Bajaj [7] that vary according toλnl in such a way
that the orthogonalization is preserved.

Following Greene and Bajaj [8] we calculate the binding energy of a given state9nlm
by means of

Eb,nlm = γ (1− 2a01)− 〈H(R,B)〉. (7)

The binding energy,Eb,nlm, is a positive quantity, which is measured with respect to the
first energy level of the system without the impurity. The expected value of the Hamiltonian
is the sum of the expected values of the kinetic〈T 〉, potential〈V 〉, diamagnetic〈D〉, and
paramagnetic〈P 〉 energies.

〈H(R,B)〉 = 〈T 〉 + 〈V 〉 + 〈D〉 + 〈P 〉. (8)

Numerical calculations have been performed by settingρ = Rt . The normalization
constant of the 2s-like state is given by

N2 = 1

[2π(A+ B + C)] (9)

whereA, B andC are written as

A = 1

λ2
2s

[β2− 2βλ2s + 2λ2
2s ]R

3
∫ 1

0
t21F

2
1 (a01, 1; ξRt2)K1(2λ2sRt) dt

B = β

λ2
2s

[β − 4βλ2s ]R
4
∫ 1

0
t31F

2
1 (a01, 1; ξRt2)K0(2λ2sRt) dt

C = 2β2R5
∫ 1

0
t41F

2
1 (a01, 1; ξRt2)K1(2λ2sRt) dt

β = λ2s + λ1s

3
.

(10)
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The expressions of〈V 〉, 〈D〉 and〈T 〉 are given by

〈V 〉 = −4πN2a∗
[

2β2R4
∫ 1

0
t31F

2
1 (a01, 1; ξRt2)K0(2λ2sRt) dt +

(
β

λ2s

)
(β − 4λ2s)R

3

×
∫ 1

0
t21F

2
1 (a01, 1; ξRt2)K1(2λ2sRt)

+2R2
∫ 1

0
t1F

2
1 (a01, 1; ξRt2)K0(2λ2sRt) dt

]
(11)

〈D〉 = πN2γ 2

2a∗2

[(
1

λ2
2s

)
(β2− 2βλ2s + 2λ2

2s)R
5
∫ 1

0
t41F

2
1 (a01, 1; ξRt2)K1(2λ2sRt) dt

+
(
β

λ2s

)
(β − 4λ2s)R

6
∫ 1

0
t51F

2
1 (a01, 1; ξRt2)K0(2λ2sRt) dt

+2β2R7
∫ 1

0
t6 1F

2
1 (a01, 1; ξRt2)K1(2λ2sRt) dt

]
(12)

〈T 〉 = −2πN2a∗2
[
− 4(λ2s + β)R2

∫ 1

0
t 1F

2
1 (a01, 1; ξRt2)K0(2λ2sRt) dt

+(β2+ 10λ2sβ + 2λ2
2s)R

3
∫ 1

0
t21F

2
1 (a01, 1; ξRt2)K1(2λ2sRt) dt

−λ2sβ(7β + 4λ2s)R
4
∫ 1

0
t31F

2
1 (a01, 1; ξRt2)K0(2λ2sRt) dt

+2β2λ2sR
5
∫ 1

0
t41F

2
1 (a01, 1; ξRt2)K1(2λ2sRt) dt +

(
4a01ϑ

λ2
2s

)
×(β2− 2βλ2s + 2λ2

2s)R
3
∫ 1

0
t21F1(a01, 1; ξRt2)1F1(a01+ 1, 2; ξRt2)

×K1(2λ2sRt) dt +
(

4a01ϑ

λ2s

)
(β2− 6βλ2s − 2λ2

2s)R
4
∫ 1

0
t31F1(a01, 1; ξRt2)

×1F1(a01+ 1, 2; ξRt2)K0(2λ2sRt) dt + 4a01ϑβ(3β + 4λ2s)R
5

×
∫ 1

0
t41F1(a01, 1; ξRt2)1F1(a01+ 1, 2; ξRt2)K1(2λ2sRt) dt

−8a01ϑλ2sβ
2R6

∫ 1

0
t51F1(a01+ 1; ξRt2)1F1(a01+ 1, 2; ξRt2)

×K0(2λ2sRt) dt +
(

2a01ϑ
2

λ2
2s

)
(1+ a01)(β

2− 2βλ2s + 2λ2
2s)R

5

×
∫ 1

0
t41F1(a01, 1; ξRt2)1F1(a01+ 2, 3; ξRt2)K1(2λ2sRt) dt

+
(

2a01βϑ
2

λ2s

)
(1+ a01)(β − 4βλ2s)R

6
∫ 1

0
t51F1(a01, 1; ξRt2)

×1F1(a01+ 2, 3; ξRt2)K0(2λ2sRt) dt + (4a01ϑ
2β2)(1+ a01)R

7

×
∫ 1

0
t61F1(a01, 1; ξRt2)1F1(a01+ 2, 3; ξRt2)K1(2λ2sRt) dt

]
(13)

where

ϑ = γ

2a∗2
.
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Figure 1. Binding energy of the 1s-like, 2s-like, 3s-like states of a donor impurity located at
the centre of a cylindrical GaAs QWW, as a function of the wire radius, and for different values
of the magnetic field.

The allowed transition energies are given by

ET (nlm→ n′l′m′) = |Eb,nlm(R,B)− Eb,n′l′m′(R,B)| (14)

and the selection rules used for the allowed transitions are [3]:

1l = l − l′ = ±1

1m = m−m′ = 0,±1.
(15)
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Figure 1. (Continued)

3. Results and discussion

In figure 1 we present the binding energy of the 1s-like, 2s-like and 3s-like states as a
function of the radius of the wire and for different values of the applied magnetic field. For
the 1s-like state we reproduce the results obtained by Braniset al [4]. For small values
of the wire radius,R < a∗, the binding energy of the three states increases significantly
and it is relatively insensitive to the magnetic field, because the diamagnetic energy tends
to zero and the kinetic energy of the electron increases drastically, surpassing the attractive
potential of the impurity. In this range of radius and for any value of the magnetic field the
geometric confinement prevails over the magnetic one.

ForR ∼ a∗ the effect of the magnetic field begins to be apparent, increasing the binding
energy, which tends to the bulk value forR ∼ 10a∗. For the 1s-like state and forB = 0 T,
our results agree with those of Aldrich and Greene [9], Brown and Spector [5] and Latgé
et al [6]. For large values of the radius,R > a∗, the magnetic field determines the behaviour
of the binding energy for all thens-like states. The expected value〈r〉 of the 3s-like state
is ∼13a∗, for B = 0 T, so that the electron is already geometrically confined in the wire of
radiusR = 10a∗ and its binding energy is a little larger than in the bulk.

For R > a∗, the binding energy of the 1s-like state increases with the magnetic field,
meanwhile for the 2s- and 3s-like states it decreases as shown in figures 1(a), 1(b) and
1(c). The 2s-like state is unbounded for radius smaller than 3a∗ and for magnetic fields
betweenB = 6 T and 10 T. The 3s-like state is unbounded for all magnetic fields used here.
The wire radius for which it begins to be unbounded is smaller when the magnetic field is
increased. The binding energies of the 2s- and 3s-like states diminish with the magnetic
field, because the kinetic energy, which is comparable with the diamagnetic one, exceeds
significantly the attractive potential.

The binding energies of 2p−- and 3p−-like states are presented in figure 2 as a function
of the radius of the wire and for different values of the applied magnetic field. In figure 2(a)
it is observed that the binding energy increases with the magnetic field. Also, it is seen
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Figure 2. Binding energy of the 2p−-like and 3p−-like states of a donor impurity located at the
centre of a cylindrical GaAs QWW, as a function of the wire radius, and for different values of
the magnetic field.

that there are two characteristic radiiRc1(B) (beyond this radius the states are bounded)
andRc2(B) (for which the binding energy reaches its maximum value). Both characteristic
radii diminish with increasingB and their values lie in the range of strong and intermediate
geometrical confinement. For QWW radiiRc1(B) < R < Rc2(B), the binding energy
increases withR and the slope of the curve becomes larger when the magnetic field is
augmented. The existence of the critical radiusRc1 is due to the strong confinement of the
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Figure 3. Binding energy of the 2pz-like and 3pz-like states of a donor impurity located at the
centre of a cylindrical GaAs QWW, as a function of the wire radius, and for different values of
the magnetic field.

wave function in the radial direction and therefore the corresponding energy is higher than
the first ionization level within the structure (the first Landau level).

In figure 2(b) we see that the 3p−-like state is very sensitive to the magnetic field for
large and small radius. Any increment in the value of the magnetic field makes the state
bounded for smaller radius. It is observed that the radius range in which the 3p−-like state
is bounded decreases and begins at a smaller radius with increasing magnetic field.
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Figure 4. Binding energy of some excited states of a donor impurity located at the centre of a
cylindrical GaAs QWW, as a function of the magnetic field forR = 2a∗, andR = 5a∗.

In figure 3 we plot the binding energy for the 2pz-like and 3pz-like states, versus the
radius of the wire and for different values of the magnetic field. We observe that for small
radius of the wire the binding energy tends to a maximum value of 1R∗ for the 2pz-like
state and 0.37R∗ for the 3pz-like state. When the radius of the wire is large in figure 3(a) it
is seen that the binding energy reaches its maximum value forB = 2 T. For higher values
of B the binding energy diminishes. In the weak and medium geometrical confinement the
binding energy is approximately constant due to the fact that〈T 〉 and〈V 〉 are also constants
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for these ranges of the radius. In figure 3(b) we present the 3pz-like state. This state is
unbounded for smaller radius as the magnetic field is increased. In this case〈T 〉 exceeds
the attractive potential energy.

In figures 4(a) and 4(b) we plot the binding energy versus the magnetic field, for the
1s-, 2s-, 2p−-, 2pz-, 3s-, 3p−-, 3pz-like states, in quantum well wires of radii 2a∗ and 5a∗,
respectively. Our results agree with those of Braniset al [4] for the 1s-like state. For all
considered states, except the 2p−- and 3p−-like states, the binding energies corresponding
to the wire of radius 2a∗ are higher than those corresponding to the wire of radius 5a∗.
For B = 0 T the geometrical confinement splits the degeneracy of the states withn = 2
and 3. This splitting is higher in the wire with smaller radius. The 3p−-like state is not
bounded in the wire of radius 2a∗ in the whole range of the magnetic field. Due to the
wire cylindrical symmetry and the on-centre impurity location,Lz, the z component of the
angular momentum operator, is conserved. Otherwise, since the Hamiltonian, equation (4),
does not mix terms inρ with z, then the crossing between the s, p−-, pz states is allowed.
In figure 4(a) we display that for the wire of radius 2a∗ the binding energy of the 1s-like
state is very insensitive to the magnetic field and is practically constant. In this case the
geometrical confinement governs over the magnetic confinement. The binding energy of
the 2s-like state diminishes when the magnetic field increases while the 2pz-like state stays
nearly constant. The 2p−-like state is only bounded forB > 7 T, due to the fact that the
magnetic field links the electron to the impurity despite the large values of〈T 〉 and〈V 〉 for
the strong geometrical confinement whenR = 2a∗. The 2s-like state presents a crossing
with the 2pz-like state forB ∼= 8.5 T and with the 2p−-like state forB ∼= 9.7 T. The binding
energy of the 1s-like state, for the wire of radius 5a∗, increases with the magnetic field. It
is interesting to observe that forB = 0 T the geometrical confinement splits the degeneracy
between the 2s-like, 2p−-like and the 2pz-like states. As it is observed that the splitting
between the excited states increases with the magnetic field.

In figure 4(b) it is observed that the 3s- and 3p-like states are degenerate when the
radius of the wire is 5a∗ for B = 0 T. There is a splitting between the 3pz-like state and the
3s-like and 3p−-like states due to the geometrical confinement. It is important to observe
that for all states displayed here, the binding energy diminishes with increasing magnetic
field, becoming unbounded for higher radius of the QWW.

In figure 5(a) we present the transition energies 1s→ 2p− as a function of the radius
of the wire for different magnetic fields. We find that for small values of the radius these
transition energies are insensitive to the magnetic field and increase significantly due to the
strong geometrical confinement. WhenR > 5a∗ the transition energies are independent of
the radius of the wire and present some dependence on the magnetic field. In figure 5(b) the
transition energies 1s→ 2pz are insensitive to the magnetic field and increase significantly
for R > a∗. ForR > 3.5a∗ the transition energies only depend on the magnetic field.

In figure 6(a) we display the transition energies between the 1s-like state and the states
with n = 2 and 3 as a function of the magnetic field for wires of radius 2a∗ and 5a∗. For
R = 2a∗ andB = 0 T the transition energies 1s→ 2p− and 1s→ 3p− are degenerate. It is
observed that this degeneracy is split by the magnetic field. All the transition energies for
B = 0 T andR = 2a∗ are higher than the corresponding ones in the wire withR = 5a∗.
The transition energies 1s→ 2pz and 1s→ 3pz are increased and split themselves with
the magnetic field. ForR = 2a∗ there is a crossing between the transitions 1s→ 2p− and
1s→ 3pz for B ∼ 7 T and also between 1s→ 3p− and 1s→ 3pz for B ∼ 7.5 T. For the
wire of radius 5a∗, when the magnetic field increases the splitting between all the transitions
is augmented. There is a crossing between the transitions 1s→ 3p− and 1s→ 3pz for
B ∼ 2.8 T. The transition energies 1s→ 2p− and 1s→ 3p− diminish with the increase of
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Figure 5. 1s→ 2p− and 1s→ 2pz transition energies of a donor impurity located at the centre
of a cylindrical GaAs QWW, as a function of the wire radius, and for different values of the
magnetic field.

the magnetic field in the wire withR = 2a∗, while the same transition energies present an
opposite behaviour with the magnetic field in the wire withR = 5a∗.

In figure 6(b) we show the transition energies 2s→ 3p− and 2s→ 3pz as a function of
the magnetic field for wires of radius 2a∗ and 5a∗, respectively. For the wire withR = 2a∗

both transition energies diminish with the magnetic field. There is a crossing between
these two transition energies forB ∼ 7.5 T. For the wire withR = 5a∗ andB < 7.5 T
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Figure 6. Infrared transition energies between some excited states of a donor impurity located
at the centre of a cylindrical GaAs QWW, as a function of the magnetic field, and for different
values of the wire radius.

the transition energies are smaller than those presented for the wire withR = 2a∗. The
transition energy 2s→ 3p− is reversed for magnetic fields between 1 and 2.3 T and there
is a crossing between these transition energies forB ∼ 2.8 T.

In figure 6(c) we display the transition energies 2p− → 3s and 2pz → 3s as a function
of the magnetic field for wires with radiusR = 2a∗ andR = 5a∗, respectively. For the
wire of radius 2a∗ the transition energy 2pz → 3s is reversed forB > 6.5 T, while the
transition 2p− → 3s is reversed forB > 8.5 T. It is noticeable that for the wire of radius
5a∗ the transition energies 2p− → 3s and 2pz → 3s increase and split with the magnetic
field, in contrast to the behaviour of the transition energies in the wire withR = 2a∗.
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Figure 6. (Continued)

4. Conclusions

In this work and for the first time, we have considered the effects of an applied magnetic
field in the binding energy of some excited states as well as the allowed transition energies
between the 1s-like, 2s-like, 3s-like, 2p−-like, 3p−-like, 2pz-like and 3pz-like states of
an on-centre shallow donor impurity in a cylindrical GaAs QWW. We have used the
effective-mass approximation within a variational scheme and considered a magnetic field
applied parallel to the axis of the wire. We have found that some excited states are not
bounded for some values of the radius of the wire and of the applied magnetic field. Also,
we have shown how the geometric confinement and the applied magnetic field raise the
degeneracy of some excited states. Unfortunately, it is not possible to compare our results
with experimental data, as measurements of the infrared transitions under applied magnetic
fields have not been carried out so far in QWWs. As has been referenced, however, some
theoretical and experimental work on the impurity infrared transition energies in GaAs–(Ga,
Al)As quantum wells has already been done under applied magnetic fields. Considering the
potential device applications of the role of impurities in semiconducting heterostructures,
we believe the present calculation will be of importance in the quantitative understanding of
future experimental work in this subject. Despite the fact that this work has been done for
GaAs using the infinite potential model, its results could be used to discuss experimental
results not only in vacuum–GaAs–vacuum, but in GaAs–Ga1−xAl xAs QWWs under the
action of applied magnetic fields, whenever 0.30< x < 0.45 in order to have high enough
potential barriers.
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